发展起来的。
话虽如此,酿酒、制酱、做奶酪等等,毕竟是原始状态的发酵工程。在
人类文明史上,那数千年的漫漫长途中,发酵工程的进步甚是缓慢。转折点
出现在 19 世纪后叶,从那时起,发酵工程开始突飞猛进了。
对于这一转折的出现,有两个人是值得一提的。
一位是 17 世纪的列文虎克,荷兰人。
列文虎克是显微镜的发明者之一。经过艰苦的探索,他制作出了能放大
2000 倍的显微镜。1683 年,他在显微镜下发现了细菌的存在。从此,微生物
世界向人类敞开了大门。人们逐渐认识到,生命世界中,在动物界、植物界
之外还有个“第三世界”——微生物界,包括细菌、酵母菌、霉菌、病毒……
另一位是 19 世纪的巴斯德,法国人。
到 19 世纪中叶,欧洲的酿造业已有相当规模,但工艺、设备仍很陈旧。
酿酒过程中时常发生的变质问题成了酿造业的心腹之患。法国化学家、微生
物家巴斯德对酒类变质问题进行了深入的研究。1857 年,他提出了著名的”
发酵理论”,即:“一切发酵工程都是微生物作用的结果。”
根据巴斯德的研究,酿酒是发酵,是微生物在做贡献;酒变质也是发酵,
是另一类微生物在作祟。人们可以用加热处理等方法杀死有害的微生物来防
止酒变质,还可以把发酵的微生物分离出来,通过人工培养,随心所欲地诱
发各种类型的发酵,获得所需的发酵产品。从此,酿造业有了科学的理论,
产品也从酒类发展为酒精、丙酮、丁酸、柠檬等化学物,发酵工程出现了第

一次飞跃。
列文虎克和巴斯德是发酵工程的功臣。

微生物的本领

发酵工程的主角是微生物。
微生物是一种通称,它包括了所有形体微小、结构简单的低等生物。从
不具有细胞结构的病毒,单细胞的立克次氏体、细菌、放线菌,到结构略为
复杂一点的酵母菌、霉菌,以及单细胞藻类(它们是植物)和原生动物(它
们是动物)等,都可以归入微生物。与发酵工程有关的,主要是细菌、放线
菌、酵母菌和霉菌。
一提到微生物,有些人就会皱起眉头,感到憎恶。因为他们想到是微生
物带来了人类的疾病,带来了植物的病害和食物的变质。其实,这种感情是
不太公正的。对人类而言,大多数微生物有益无害,会造成损害的微生物只
是少数。就总体来说,微生物肯定是功大于过,而且是功远远大于过。近年
来迅速崛起的发酵工程,更是为许多微生物彻底改变了形象。因为在发酵工
程里,正是这些微生物在忙忙碌碌,工作不息,甚至不惜粉身碎骨,才使得
五光十色的产品能一一面世。从“乐百氏奶”等乳酸菌饮料,到比黄金还贵
的干扰素等药品,都是微生物对人类的无私奉献。
微生物在发酵工程里充当着生产者的角色,这与它的特性是分不开的。
微生物的特性可以用三句话来概括,那就是:孙悟空式的生存本领,猪八戒
式的好胃口,首屈一指的超生游击队。下面我们分别来介绍一下。

一、孙悟空式的生存本领

孙悟空在神话里是个怎么也折腾不死的英雄。微生物的生存本领有点像
孙悟空。对周围环境的温度、压强、渗透压、酸碱度等条件,微生物有极大
的适应能力。拿温度来说,有些微生物在 80~90℃的环境中仍能繁衍不息,
另一些微生物则能在-30℃的环境中过得逍遥自在,甚至在-250℃的低温下仍
不会死去,只是进入“冬眠”状态而已。拿压强来说,在 10 千米深的海底,
压强高达 1.18×108 帕,但有一种嗜压菌照样很活跃,而人在那儿会被压成
一张纸。拿渗透压来说,举世闻名的死海里,湖水含盐量高达 25%,可是仍
有许多细菌生活着。正因为微生物有那么强盛的生命力,所以地球上到处都
有它们的踪迹。
就像孙悟空会七十二变,微生物的强盛生命力还表现在善于变化上。外
界环境的改变,或是内部的某个因素,都可能使某种微生物一下子变得面目
全非,而且以后就以新的面目繁殖后代,遗传下去。这种变化往往使它更能
适应环境,或者更适应人类的某种需要。微生物的这个特性在发酵工程里得
到了很好的利用。

二、猪八戒式的好胃口

猪八戒是个馋鬼。微生物吃起东西来,那风卷残云的气势活像猪八戒。
和高等动物相比,微生物的消化能力要强上数万倍。在发酵罐里,一克酒精

酵母一天能吃下数千克糖类,把它们分解成酒精;在人体里成千上万地盘踞
着的大肠杆菌,如果能彻底满足它们的话,一个小时里能吃掉比自己重 2000
倍的糖。
可不要以为这些小东西都像小孩子一样贪吃糖,微生物几乎什么都能
吃。石油、塑料、纤维素、金属氧化物,都在微生物的食谱里;连形形色色
的工业垃圾,残留在土壤里的农药 DDT,甚至那剧毒的砒霜,也是某些微生
物竞相吞吃的美味。这一点大概连贪吃的猪八戒也自愧弗如。

三、首屈一指的超生游击队

微生物的繁殖速度简直令人咋舌。大多数微生物是以“分”来计算繁殖
周期的。也就是说,每隔数十分钟,一个微生物就会变成两个;再过一个周
期,两个就会变成 4 个。只要条件合适,微生物的数量就会不停地成倍成倍
地增长。大肠杆菌的繁殖周期大约是 12~17 分钟,就算是 20 分钟吧,一个
大肠杆菌一天就能繁殖 72 代。有人算过,如果这 72 代都活下来,数目就是
4722366482869645213696 个。按每 10 亿个大肠杆菌重 1 毫克计算,这些大
肠杆菌大约重 4722 吨。照这样推算下去,要不了两天,繁殖出来的大肠杆菌
重量就会超过地球。
这样一说可能你会担心,明天早上醒来时地球上已经积了厚厚一层细
菌,人类要没有立足之地了。请放心吧,这种事是不会发生的,因为许多条
件在约束着微生物的繁殖。在现实生活中,微生物数量不会无限制地增长,
而总是保持在相对稳定的水平上。但是,那种惊人的繁殖能力,微生物是确
实具备的。如果人们在其个局部环境里能充分满足微生物所需的条件,这种
繁殖能力就会得到充分的发挥。
微生物的特性还可以举出一些,但是,最突出的,与发酵工程关系最密
切的,就数这三条了。

人工蛋白质

德国慕尼黑的一家餐馆里,近年来有一道名菜声誉鹊起那道菜叫做“神
奇牛排”,滋味美妙无比。
慕名而来的食客们,品尝了“神奇牛排”后,在赞赏这一美味的同时,
往往会发出这样的疑问:“这是牛排吗?怎么有点像猪排,又有点像鸡脯?
难道是神奇的烹调术使它的味道走了样?”
餐馆的侍者们往往笑而不答,最多是含糊其词地说一句:“嗬,那是超
越自然的力量。”
侍者们知道,如果说明真相,也许会使某些食客心头发腻——那“牛排”
实际上是人造的,是一大团微生物(酵母菌或细菌)干制品,或者说是一大
团微生物尸体。
如果再作进一步说明,可能会引起食客反胃,甚至感到恐惧——制造这
些人造牛排的原材料是对人体有毒性的甲醇、甲烷等化学品,或者是纤维之
类的工厂废弃物。
这些人造牛排的学名叫单细胞蛋白。单细胞蛋白也是发酵工程对人类的
杰出贡献之一。

以发酵工程来生产单细胞蛋白是不太复杂的事,关键是选育出性能优良
的酵母菌或细菌。这些微生物食性不一,或者嗜食甲醇,或者嗜食甲烷,或
者嗜食纤维素,等等。它们的共同点是都能把这些“食物”彻底消化吸收,
再合成蛋白质贮存在体内。由于营养充分,环境舒适,这些微生物迅速繁殖,
一天里要繁殖十几代甚至几十代。每一代新生的微生物又会拼命吞噬“食
物”,合成蛋白质,并繁殖下一代……当然,这些过程都是在发酵罐里完成
的。人们通过电脑严密地控制着罐内的发酵过程,不断加入水和营养物(甲
醇、甲烷、纤维素……),不时取出高浓度的发酵液,用快速干燥法制取成
品——单细胞蛋白。
在发酵罐内,每一个微生物就是一座蛋白质合成工厂,每一个微生物体
重的 50%~70%是蛋白质。
一些数字可以说明发酵工程生产单细胞蛋白的效率有多高。
一头 100 千克的母牛一天只能生产 400 克蛋白质,而生产单细胞蛋白的
发酵罐里,100 千克的微生物一天能生产 1 吨蛋白质。
1 座 6O0 升的小型发酵罐,一天可生产 24 千克单细胞蛋白。
每 100 克单细胞蛋白成品里含有蛋白质 50~70 克,而同样重量的瘦猪肉
和鸡蛋的蛋白质含量分别是 20 克和 14 克。
用发酵工程生产的单细胞蛋白不仅绝对无毒,而且滋味可口。由于原料
来源广泛,成本低廉,有可能大规模地生产。
蛋白质是构成人体组织的主要材料,每个人在一生中要吃下约 1.6 吨蛋
白质。然而,蛋白质是地球上最为缺乏的食品,按全世界人口的实际需要来
计算,每年缺少蛋白质的数量达 3000~4000 万吨。可见,发酵工程生产单细
胞蛋白的意义远远超出慕尼黑餐馆里供应的“神奇牛排”,它对全人类,对
全世界有着不可估量的作用。
60 年代,英国率行实现了单细胞蛋白的工业化生产。此后,日本、美国、
法国、前苏联、德国相继建立了生产单细胞蛋白的工厂。步入 90 年代,全世
界单细胞蛋白的产量已经超过 2000 万吨,质量也有了重大突破,从主要用作
饲料发展到走上人们的餐桌。那“神奇牛排”便是一例。
发生在欧洲的一项进展是颇为有趣的。那里的科学家发现了一种新的生
产单细胞蛋白的细胞——一种极为能干的氢细菌。这种氢细菌只吃氢气和空
气就能合成蛋白质,并排出纯净的水。不过,要获得廉价的氢气,只有用电
来分解水才行。于是,科学家们就计划在阳光充沛的荒漠上建造新颖的太阳
能电站,用太阳能来生产电,然后制取氢气,通过发酵工程生产单细胞蛋白。
这样,“荒漠变良田”的美好愿望就有可能用一种崭新的方式来实现了。

氨基酸

人们常说,鸡肉、牛羊肉、瘦猪肉有营养,动物蛋白比植物蛋白营养价
值高。以动物蛋白为主食的人精神健旺,耐力持久。你知道是什么原因吗?
原来,蛋白质是构成人体组织的基本材料,而组成蛋白质的基本单位是
氨基酸。人体内的蛋白质种类繁多,千变万化,但归根结蒂都是由 20 多种氨
基酸以特定的排列方式组合成的。这 20 多种氨基酸中有 8 种是人体自身不能
合成,必须从食物中摄取的,称为“必需氨基酸”。而动物蛋白之所以营养
价值高,就是因为这 8 种必需氨基酸的含量比较高。

我们来看看 8 种必需氨基酸中最重要的一种——赖氨酸。
在大米、玉米、小麦中添加少量赖氨酸,就能极大地提高营养价值,接
近动物蛋白的水平。联合国粮农组织和世界卫生组织确认,用添加赖氨酸来
强化植物蛋白的营养,是解决不发达国家人口膨胀、营养缺乏的最经济、最
有效的手段。
令人高兴的是,发酵工程已经能大量生产赖氨酸了。最早用发酵法生产
赖氨酸是在 60 年代初。那时的原料是葡萄糖水,生产效率也很低下。随着发
酵工程的飞速发展,科学家们不仅通过筛选找到了一种又一种高产的菌种,
还通过物理、化学方法的诱导和基因工程的协助,造就了一种又一种性能优
异的菌株,使得赖氨酸的产率大大提高,而且原料也改用价格低廉的化学工
业品,如生产尼龙的一种副产品等。
假如,国际市场上 1 千克赖氨酸的价格仅合人民币 5 元左右。而在 1 吨
粮食里添加 2~4 千克赖酸,就相当于增产了 100 千克鸡蛋,或是 50 千克猪
肉。换句话说,10 元钱的赖氨酸,就等于是 50 千克猪肉。算算这笔帐,你
能不赞叹发酵工程的神通广大吗?
今天的发酵工程已经能生产所有的 20 多种基酸,以致这一部分的发酵工
程被称为“氨基酸工业”。这 20 多种氨基酸,有的被用作食品添加剂、调味
品,有的是药品,有的则充任饲料添加剂,间接地为人类服务。
氨基酸工业的产品,早已进入了家家户户。你家里不是常使用味精吗,
味精的学名叫谷氨酸钠,它的主要成分就是一种氨基酸——谷氨酸。在本世
纪三四十年代,味精是用小麦、大豆等粮食作原料,用盐酸水解法来生产的。
每 30 吨小麦只能生产 1 吨味精。60 年代开始用发酵法生产,原料改为淀粉、
葡萄糖。后来又逐步改为使用醋酸,既节约了粮食,又降低了成本。80 年代
末全世界味精的产量已达到 40 万吨,仅日本就要生产七八万吨。
全世界的氨基酸产量每年都稳定增长,幅度在 10%左右。
除了有些氨基酸用作药品外,还有许多药品生产是发酵工程的“势力范
围”,而且这一“势力范围”在逐年扩大。例如抗菌素,这个人们很熟悉的
药品大家族,几乎无一不是发酵工程的产品。其他如比黄金还贵的干扰素,
治糖尿病的特效药胰岛素等,也都一样。

消除“能源危机”

自我们的祖先钻木取火、实现人类文明发展史的一大飞跃以来,社会的
发展、人民的生活从此与能源息息相关。从风车到蒸汽机的发明,从电力到
核能的运用,能源推动着社会生产力的发展,推动着人类历史前进。能源直
接关系到国民经济的增长。因此人们把它当作经济发展的命脉和经济沉浮的
砝码。特别是近代,人们对煤、石油、天然气等矿物能源大量的开采利用,
更是使工业、交通一日千里,人们的物质文明日新月异。不过,这些矿物能
源毕竟是有限的,开采一点就会少一点。它们都是不可再生的能源,人们不
可能再等待那遥遥无期的另一次造山运动“造就”它们。
能源危机的警钟已经敲响!然而,“山穷水尽疑无路,柳暗花明又一村”,
充满智慧的人类又把目光投向太阳能、风能、地热能、海洋波力能、核能和
生物能等新能源的开发利用。在这些新能源中,生物能源却以它无法比拟的
优势脱颖而出,受到人类的充分重视。

生物能源主要包括植物、动物和微生物所直接或间接提供的各种能源和
动力,但主要是植物利用太阳能所制造的各种有机物质中所固定的化学能。
这种能源是再生能源,它可以循环往复以至无穷,因而是一种富有生命力的
能源。它将成为未来能源世界的宠儿。为什么生物能源能够再生?原来绿色
植物有一种独特的本领,它能够将太阳能转化成化学能储藏在它自己制造的
有机物中。动物以植物为食,植物中的能量随之转移到动物体内,动物以植
物有机物中产生的能量维持生命。当动物死后,被微生物分解,微生物从中
获得能量,同时将有机物分解成二氧化碳、水、甲烷和氨等,可再被植物利
用。这样,能量在动物、植物、微生物中循环不止,它不断被消耗又不断再
生。因此,你不用担心它会用完,除非这个大循环中有一环中断。
“万物生长靠太阳”。根据计算,每一秒钟由太阳照射到地球上的能量,
相当于燃烧 500 万吨煤所放出的热量,一年高达 8×1023卡,相当于 170 万
亿吨煤的热量。现在全世界一年消耗的能量还不到它的万分之一。但是,到
达地球表面的太阳能仅有千分之一至千分之二被植物所吸收,其余的又散发
到宇宙中去了。每年通过光合作用固定在储存能源中碳的数量,是全世界总
的能源消耗量的 10 倍,其中只有 0.5%被人们所利用。

Prev | Next
Pg.: 1 ... 326 327 328 329 330 331 332 333 334 335 336 ... 712


Back to home | File page

Subscribe | Register | Login | N